Approach to thermal equilibrium of macroscopic quantum systems.

Journal: Physical Review. E, Statistical, Nonlinear, And Soft Matter Physics
Published:
Abstract

We consider an isolated macroscopic quantum system. Let H be a microcanonical "energy shell," i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E+deltaE . The thermal equilibrium macrostate at energy E corresponds to a subspace H(eq) of H such that dim H(eq)/dim H is close to 1. We say that a system with state vector psi is the element of H is in thermal equilibrium if psi is "close" to H(eq). We show that for "typical" Hamiltonians with given eigenvalues, all initial state vectors psi(0) evolve in such a way that psi(t) is in thermal equilibrium for most times t. This result is closely related to von Neumann's quantum ergodic theorem of 1929.

Authors
Sheldon Goldstein, Joel Lebowitz, Christian Mastrodonato, Roderich Tumulka, Nino Zanghi