Screening for active pulmonary tuberculosis: Development and applicability of artificial neural network models.

Journal: Tuberculosis (Edinburgh, Scotland)
Published:
Abstract

Tuberculosis (TB) remains a significant public health challenge, motivated by the diversity of healthcare epidemiological settings, as other factors. Cost-effective screening has substantial importance for TB control, demanding new diagnostic tools. This paper proposes a decision support tool (DST) for screening pulmonary TB (PTB) patients at a secondary clinic. The DST is composed of an adaptive resonance model (iART) for risk group identification (low, medium and high) and a multilayer perceptron (MLP) neural network for classifying patients as active or inactive PTB. Our tool attains an overall sensitivity (SE) and specificity (SP) of 92% (95% CI; 79-97) and 58% (95% CI; 47-68), respectively. SE values for smear-positive and smear-negative patients are 96% (95% CI; 80-99) and 82% (95% CI; 52-95), as well as higher than 83% (95% CI; 43-97) in low and high-risk cases. Even in scenarios with prevalence up to 20%, negative predictive values superior to 95% are obtained. The proposed DST provides a quick and low-cost pretest for presumptive PTB patients, which is useful to guide confirmatory testing and patient management, especially in settings with limited resources in low and middle-incoming countries.

Authors
João Baptista De Oliveira Souza Filho, Mauro Sanchez, José Manoel Seixas, Carmen Maidantchik, Rafael Galliez, Adriana Da Silva Moreira, Paulo Da Costa, Martha Oliveira, Anthony Harries, Afrânio Kritski
Relevant Conditions

Pulmonary Tuberculosis