The effects of dynamic workload and experience on commercially available EEG cognitive state metrics in a high-fidelity air traffic control environment.
The current study evaluated the validity of commercially available electroencephalography (EEG) cognitive state metrics of workload and engagement in differentially experienced air traffic control (ATC) students. EEG and pupil diameter recordings were collected from 47 ATC students (27 more experienced and 20 less experienced) during a high-fidelity, variable workload approach-control scenario. Scenario workload was manipulated by increasing the number of aircraft released and the presence of a divided attention task. Results showed that scenario performance significantly degraded with increased aircraft and the presence of the divided attention task. No scenario performance differences were found between experience groups. The EEG engagement metric significantly differed between experience groups, with less experienced controllers exhibiting higher engagement than more experienced controllers. The EEG workload metric and pupil diameter were sensitive to workload manipulations but did not differentiate experience groups. Commercially available EEG cognitive state metrics may be a viable tool for enhancing ATC training.