Event-Triggered Exponential Synchronization for Complex-Valued Memristive Neural Networks With Time-Varying Delays.

Journal: IEEE Transactions On Neural Networks And Learning Systems
Published:
Abstract

This article solves the event-triggered exponential synchronization problem for a class of complex-valued memristive neural networks with time-varying delays. The drive-response complex-valued memristive neural networks are translated into two real-valued memristive neural networks through the method of separating the complex-valued memristive neural networks into real and imaginary parts. In order to reduce the information exchange frequency between the sensor and the controller, a novel event-triggered mechanism with the event-triggering functions is introduced in wireless communication networks. Some sufficient conditions are established to achieve the event-triggered exponential synchronization for drive-response complex-valued memristive neural networks with time-varying delays. In addition, to guarantee that the Zeno behavior cannot occur, a positive lower bound for the interevent times is explicitly derived. Finally, numerical simulations are provided to illustrate the effectiveness and superiority of the obtained theoretical results.

Authors
Xiaofan Li, Wenbing Zhang, Jian-an Fang, Huiyuan Li