Deep learning-based pulmonary nodule detection: Effect of slab thickness in maximum intensity projections at the nodule candidate detection stage.
Objective: To investigate the effect of the slab thickness in maximum intensity projections (MIPs) on the candidate detection performance of a deep learning-based computer-aided detection (DL-CAD) system for pulmonary nodule detection in CT scans.
Methods: The public LUNA16 dataset includes 888 CT scans with 1186 nodules annotated by four radiologists. From those scans, MIP images were reconstructed with slab thicknesses of 5 to 50 mm (at 5 mm intervals) and 3 to 13 mm (at 2 mm intervals). The architecture in the nodule candidate detection part of the DL-CAD system was trained separately using MIP images with various slab thicknesses. Based on ten-fold cross-validation, the sensitivity and the F2 score were determined to evaluate the performance of using each slab thickness at the nodule candidate detection stage. The free-response receiver operating characteristic (FROC) curve was used to assess the performance of the whole DL-CAD system that took the results combined from 16 MIP slab thickness settings.
Results: At the nodule candidate detection stage, the combination of results from 16 MIP slab thickness settings showed a high sensitivity of 98.0% with 46 false positives (FPs) per scan. Regarding a single MIP slab thickness of 10 mm, the highest sensitivity of 90.0% with 8 FPs/scan was reached before false positive reduction. The sensitivity increased (82.8% to 90.0%) for slab thickness of 1 to 10 mm and decreased (88.7% to 76.6%) for slab thickness of 15-50 mm. The number of FPs was decreasing with increasing slab thickness, but was stable at 5 FPs/scan at a slab thickness of 30 mm or more. After false positive reduction, the DL-CAD system, utilizing 16 MIP slab thickness settings, had the sensitivity of 94.4% with 1 FP/scan.
Conclusions: The utilization of multi-MIP images could improve the performance at the nodule candidate detection stage, even for the whole DL-CAD system. For a single slab thickness of 10 mm, the highest sensitivity for pulmonary nodule detection was reached at the nodule candidate detection stage, similar to the slab thickness usually applied by radiologists.