Hyperspectral Microscopic Imaging for the Detection of Head and Neck Squamous Cell Carcinoma on Histologic Slides.

Journal: Proceedings Of SPIE--The International Society For Optical Engineering
Published:
Abstract

The purpose of this study is to investigate hyperspectral microscopic imaging and deep learning methods for automatic detection of head and neck squamous cell carcinoma (SCC) on histologic slides. Hyperspectral imaging (HSI) cubes were acquired from pathologic slides of 18 patients with SCC of the larynx, hypopharynx, and buccal mucosa. An Inception-based two-dimensional convolutional neural network (CNN) was trained and validated for the HSI data. The automatic deep learning method was tested with independent data of human patients. This study demonstrated the feasibility of using hyperspectral microscopic imaging and deep learning classification to aid pathologists in detecting SCC on histologic slides.

Authors
Ling Ma, Ximing Zhou, James Little, Amy Chen, Larry Myers, Baran Sumer, Baowei Fei