Deep-learning magnetic resonance imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution.

Journal: Physics And Imaging In Radiation Oncology
Published:
Abstract

Normal tissue sparing in radiotherapy relies on proper delineation. While manual contouring is time consuming and subject to inter-observer variability, auto-contouring could optimize workflows and harmonize practice. We assessed the accuracy of a commercial, deep-learning, MRI-based tool for brain organs-at-risk delineation. Thirty adult brain tumor patients were retrospectively manually recontoured. Two additional structure sets were obtained: AI (artificial intelligence) and AIedit (manually corrected auto-contours). For 15 selected cases, identical plans were optimized for each structure set. We used Dice Similarity Coefficient (DSC) and mean surface-distance (MSD) for geometric comparison and gamma analysis and dose-volume-histogram comparison for dose metrics evaluation. Wilcoxon signed-ranks test was used for paired data, Spearman coefficient(ρ) for correlations and Bland-Altman plots to assess level of agreement. Auto-contouring was significantly faster than manual (1.1/20 min, p < 0.01). Median DSC and MSD were 0.7/0.9 mm for AI and 0.8/0.5 mm for AIedit. DSC was significantly correlated with structure size (ρ = 0.76, p < 0.01), with higher DSC for large structures. Median gamma pass rate was 74% (71-81%) for Plan_AI and 82% (75-86%) for Plan_AIedit, with no correlation with DSC or MSD. Differences between Dmean_AI and Dmean_Ref were ≤ 0.2 Gy (p < 0.05). The dose difference was moderately correlated with DSC. Bland Altman plot showed minimal discrepancy (0.1/0) between AI and reference Dmean/Dmax. The AI-model showed good accuracy for large structures, but developments are required for smaller ones. Auto-segmentation was significantly faster, with minor differences in dose distribution caused by geometric variations.

Authors
Andrada Turcas, Daniel Leucuta, Cristina Balan, Enrico Clementel, Cristina Gheara, Alex Kacso, Sarah Kelly, Delia Tanasa, Dana Cernea, Patriciu Achimas Cadariu
Relevant Conditions

Brain Tumor