Variable Gain Impulsive Synchronization for Discrete-Time Delayed Neural Networks and Its Application in Digital Secure Communication.

Journal: IEEE Transactions On Neural Networks And Learning Systems
Published:
Abstract

This article revisits the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs) in the presence of disturbance in the input channel. A new Lyapunov approach based on double Lyapunov functionals is introduced for analyzing exponential input-to-state stability (EISS) of discrete impulsive delayed systems. In the framework of double Lyapunov functionals, a pair of timer-dependent Lyapunov functionals are constructed for impulsive DDNNs. The pair of Lyapunov functionals can introduce more degrees of freedom that not only can be exploited to reduce the conservatism of the previous methods, but also make it possible to design variable gain impulsive controllers. New design criteria for impulsive stabilization and impulsive synchronization are derived in terms of linear matrix inequalities. Numerical results show that compared with the constant gain design technique, the proposed variable gain design technique can accept larger impulse intervals and equip the impulsive controllers with a stronger disturbance attenuation ability. Applications to digital signal encryption and image encryption are provided which validate the effectiveness of the theoretical results.

Authors
Wu-hua Chen, Yufan Chen, Wei Zheng