CLIP-Driven Fine-Grained Text-Image Person Re-Identification.

Journal: IEEE Transactions On Image Processing : A Publication Of The IEEE Signal Processing Society
Published:
Abstract

Text-Image Person Re-identification (TIReID) aims to retrieve the image corresponding to the given text query from a pool of candidate images. Existing methods employ prior knowledge from single-modality pre-training to facilitate learning, but lack multi-modal correspondence information. Vision-Language Pre-training, such as CLIP (Contrastive Language-Image Pretraining), can address the limitation. However, CLIP falls short in capturing fine-grained information, thereby not fully leveraging its powerful capacity in TIReID. Besides, the popular explicit local matching paradigm for mining fine-grained information heavily relies on the quality of local parts and cross-modal inter-part interaction/guidance, leading to intra-modal information distortion and ambiguity problems. Accordingly, in this paper, we propose a CLIP-driven Fine-grained information excavation framework (CFine) to fully utilize the powerful knowledge of CLIP for TIReID. To transfer the multi-modal knowledge effectively, we conduct fine-grained information excavation to mine modality-shared discriminative details for global alignment. Specifically, we propose a multi-level global feature learning (MGF) module that fully mines the discriminative local information within each modality, thereby emphasizing identity-related discriminative clues through enhanced interaction between global image (text) and informative local patches (words). MGF generates a set of enhanced global features for later inference. Furthermore, we design cross-grained feature refinement (CFR) and fine-grained correspondence discovery (FCD) modules to establish cross-modal correspondence at both coarse and fine-grained levels (image-word, sentence-patch, word-patch), ensuring the reliability of informative local patches/words. CFR and FCD are removed during inference to optimize computational efficiency. Extensive experiments on multiple benchmarks demonstrate the superior performance of our method in TIReID.

Authors
Shuanglin Yan, Neng Dong, Liyan Zhang, Jinhui Tang