A gadoxetic acid-enhanced MRI-based model using LI-RADS v2018 features for preoperatively predicting Ki-67 expression in hepatocellular carcinoma.

Journal: BMC Medical Imaging
Published:
Abstract

Objective: To construct a gadoxetic acid-enhanced MRI (EOB-MRI) -based multivariable model to predict Ki-67 expression levels in hepatocellular carcinoma (HCC) using LI-RADS v2018 imaging features.

Methods: A total of 121 patients with HCC who underwent EOB-MRI were enrolled in this study. The patients were divided into three groups according to Ki-67 cut-offs: Ki-67 ≥ 20% (n = 86) vs. Ki-67 < 20% (n = 35); Ki-67 ≥ 30% (n = 73) vs. Ki-67 < 30% (n = 48); Ki-67 ≥ 50% (n = 45) vs. Ki-67 < 50% (n = 76). MRI features were analyzed to be associated with high Ki-67 expression using logistic regression to construct multivariable models. The performance characteristic of the models for the prediction of high Ki-67 expression was assessed using receiver operating characteristic curves.

Results: The presence of mosaic architecture (p = 0.045), the presence of infiltrative appearance (p = 0.039), and the absence of targetoid hepatobiliary phase (HBP, p = 0.035) were independent differential factors for the prediction of high Ki-67 status (≥ 50% vs. < 50%) in HCC patients, while no features could predict high Ki-67 status with thresholds of 20% (≥ 20% vs. < 20%) and 30% (≥ 30% vs. < 30%) (p > 0.05). Four models were constructed including model A (mosaic architecture and infiltrated appearance), model B (mosaic architecture and targetoid HBP), model C (infiltrated appearance and targetoid HBP), and model D (mosaic architecture, infiltrated appearance and targetoid HBP). The model D yielded better diagnostic performance than the model C (0.776 vs. 0.669, p = 0.002), but a comparable AUC than model A (0.776 vs. 0.781, p = 0.855) and model B (0.776 vs. 0.746, p = 0.076).

Conclusions: Mosaic architecture, infiltrated appearance and targetoid HBP were sensitive imaging features for predicting Ki-67 index ≥ 50% and EOB-MRI model based on LI-RADS v2018 features may be an effective imaging approach for the risk stratification of patients with HCC before surgery.

Authors
Yingying Liang, Fan Xu, Qiuju Mou, Zihua Wang, Chuyin Xiao, Tingwen Zhou, Nianru Zhang, Jing Yang, Hongzhen Wu
Relevant Conditions

Liver Cancer