Development and Validation of an 18F-FDG PET/CT-based Radiomics Nomogram for Predicting the Prognosis of Patients with Esophageal Squamous Cell Carcinoma.

Journal: Academic Radiology
Published:
Abstract

Rationale and

Objectives: The aim of this study was to develop and validate a nomogram, integrating clinical factors and radiomics features, capable of predicting overall survival (OS) in patients diagnosed with esophageal squamous cell carcinoma (ESCC).

Methods: In this study, we retrospectively analyzed the case data of 130 patients with ESCC who underwent 18F-FDG PET/CT before treatment. Radiomics features associated with OS were screened by univariate Cox regression (p < 0.05). Further selection was performed by applying the least absolute shrinkage and selection operator Cox regression to generate the weighted Radiomics-score (Rad-score). Independent clinical risk factors were obtained by multivariate Cox regression, and a nomogram was constructed by combining Rad-score and independent risk factors. The predictive performance of the model for OS was assessed using the time-dependent receiver operating characteristic curve, concordance index (C-index), calibration curve, and decision curve analysis.

Results: Five radiomics features associated with prognosis were finally screened, and a Rad-score was established. Multivariate Cox regression analysis revealed that surgery and clinical M stage were identified as independent risk factors for OS in ESCC. The combined clinical-radiomics nomogram exhibited C-index values of 0.768 (95% CI: 0.699-0.837) and 0.809 (95% CI: 0.695-0.923) in the training and validation cohorts, respectively. Ultimately, calibration curves and decision curves for the 1-, 2-, and 3-year OS demonstrated the satisfactory prognostic prediction and clinical utility of the nomogram.

Conclusion: The developed nomogram, leveraging 18F-FDG PET/CT radiomics and clinically independent risk factors, demonstrates a reliable prognostic prediction for patients with ESCC, potentially serving as a valuable tool for guiding and optimizing clinical treatment decisions in the future.

Authors
Jiahui Huang, Tiannv Li, Lijun Tang, Yuxiao Hu, Yao Hu, Yingying Gu
Relevant Conditions

Esophageal Cancer