Knowledge, Attitude and Practice of Radiologists Regarding Artificial Intelligence in Medical Imaging.

Journal: Journal Of Multidisciplinary Healthcare
Published:
Abstract

This study aimed to investigate the knowledge, attitudes, and practice (KAP) of radiologists regarding artificial intelligence (AI) in medical imaging in the southeast of China. This cross-sectional study was conducted among radiologists in the Jiangsu, Zhejiang, and Fujian regions from October to December 2022. A self-administered questionnaire was used to collect demographic data and assess the KAP of participants towards AI in medical imaging. A structural equation model (SEM) was used to analyze the relationships between KAP. The study included 452 valid questionnaires. The mean knowledge score was 9.01±4.87, the attitude score was 48.96±4.90, and 75.22% of participants actively engaged in AI-related practices. Having a master's degree or above (OR=1.877, P=0.024), 5-10 years of radiology experience (OR=3.481, P=0.010), AI diagnosis-related training (OR=2.915, P<0.001), and engaging in AI diagnosis-related research (OR=3.178, P<0.001) were associated with sufficient knowledge. Participants with a junior college degree (OR=2.139, P=0.028), 5-10 years of radiology experience (OR=2.462, P=0.047), and AI diagnosis-related training (OR=2.264, P<0.001) were associated with a positive attitude. Higher knowledge scores (OR=5.240, P<0.001), an associate senior professional title (OR=4.267, P=0.026), 5-10 years of radiology experience (OR=0.344, P=0.044), utilizing AI diagnosis (OR=3.643, P=0.001), and engaging in AI diagnosis-related research (OR=6.382, P<0.001) were associated with proactive practice. The SEM showed that knowledge had a direct effect on attitude (β=0.481, P<0.001) and practice (β=0.412, P<0.001), and attitude had a direct effect on practice (β=0.135, P<0.001). Radiologists in southeastern China hold a favorable outlook on AI-assisted medical imaging, showing solid understanding and enthusiasm for its adoption, despite half lacking relevant training. There is a need for more AI diagnosis-related training, an efficient standardized AI database for medical imaging, and active promotion of AI-assisted imaging in clinical practice. Further research with larger sample sizes and more regions is necessary.

Authors
Wennuo Huang, Yuanzhe Li, Zhuqing Bao, Jing Ye, Wei Xia, Yan Lv, Jiahui Lu, Chao Wang, Xi Zhu