Genetic Algorithm-based Convolutional Neural Network Feature Engineering for Optimizing Coronary Heart Disease Prediction Performance.
Objective: This study aimed to optimize early coronary heart disease (CHD) prediction using a genetic algorithm (GA)-based convolutional neural network (CNN) feature engineering approach. We sought to overcome the limitations of traditional hyperparameter optimization techniques by leveraging a GA for superior predictive performance in CHD detection.
Methods: Utilizing a GA for hyperparameter optimization, we navigated a complex combinatorial space to identify optimal configurations for a CNN model. We also employed information gain for feature selection optimization, transforming the CHD datasets into an image-like input for the CNN architecture. The efficacy of this method was benchmarked against traditional optimization strategies.
Results: The advanced GA-based CNN model outperformed traditional methods, achieving a substantial increase in accuracy. The optimized model delivered a promising accuracy range, with a peak of 85% in hyperparameter optimization and 100% accuracy when integrated with machine learning algorithms, namely naïve Bayes, support vector machine, decision tree, logistic regression, and random forest, for both binary and multiclass CHD prediction tasks.
Conclusions: The integration of a GA into CNN feature engineering is a powerful technique for improving the accuracy of CHD predictions. This approach results in a high degree of predictive reliability and can significantly contribute to the field of AI-driven healthcare, with the possibility of clinical deployment for early CHD detection. Future work will focus on expanding the approach to encompass a wider set of CHD data and potential integration with wearable technology for continuous health monitoring.