GINNA, a 33 resting-state networks atlas with meta-analytic decoding-based cognitive characterization.
Since resting-state networks were first observed using magnetic resonance imaging (MRI), their cognitive relevance has been widely suggested. However, to date, the empirical cognitive characterization of these networks has been limited. The present study introduces the Groupe d'Imagerie Neurofonctionnelle Network Atlas, a comprehensive brain atlas featuring 33 resting-state networks. Based on the resting-state data of 1812 participants, the atlas was developed by classifying independent components extracted individually, ensuring consistent between-subject detection. We further explored the cognitive relevance of each GINNA network using Neurosynth-based meta-analytic decoding and generative null hypothesis testing. Significant cognitive terms for each network were then synthesized into appropriate cognitive processes through the consensus of six authors. The GINNA atlas showcases a diverse range of topological profiles, reflecting a broad spectrum of the known human cognitive repertoire. The processes associated with each network are named according to the standard Cognitive Atlas ontology, thus providing opportunities for empirical validation.