Securing IoT Networks Against DDoS Attacks: A Hybrid Deep Learning Approach.

Journal: Sensors (Basel, Switzerland)
Published:
Abstract

The Internet of Things (IoT) has revolutionized many domains. Due to the growing interconnectivity of IoT networks, several security challenges persist that need to be addressed. This research presents the application of deep learning techniques for Distributed Denial-of-Service (DDoS) attack detection in IoT networks. This study assesses the performance of various deep learning models, including Latent Autoencoders, LSTM Autoencoders, and convolutional neural networks (CNNs), for DDoS attack detection in IoT environments. Furthermore, a novel hybrid model is proposed, integrating CNNs for feature extraction, Long Short-Term Memory (LSTM) networks for temporal pattern recognition, and Autoencoders for dimensionality reduction. Experimental results on the CICIOT2023 dataset show the enhanced performance of the proposed hybrid model, achieving training and testing accuracy of 96.78% integrated with 96.60% validation accuracy. This presents its efficiency in addressing complex attack patterns within IoT networks. Results' analysis shows that the proposed hybrid model outperforms the others. However, this research has limitations in detecting rare attack types and emphasizes the importance of addressing data imbalance challenges for further enhancement of DDoS attack detection capabilities in future.

Authors
Noor Ain, Muhammad Sardaraz, Muhammad Tahir, Mohamed Abo Elsoud, Abdullah Alourani