I-Brainer: Artificial intelligence/Internet of Things (AI/IoT)-Powered Detection of Brain Cancer.
Objective: Brain tumour is characterized by its aggressive nature and low survival rate and thus regarded as one of the deadliest diseases. Thus, miss-diagnosis or miss-classification of brain tumour can lead to miss treatment or incorrect treatment and reduce survival chances. Therefore, there is need to develop a technique that can identify and detect brain tumour at early stages.
Methods: Here, we proposed a framework titled I-Brainer which is an Artificial Intelligence/Internet of Things (AI/IoT)-powered classification of MRI. We employed a Br35H+SARTAJ brain MRI dataset which contain 7023 total images which include No tumour, pituitary, meningioma and glioma. In order to accurately classified MRI into 4-class, we developed LeNet model from scratch, implemented 2 pretrained models which include EfficientNet and ResNet-50 as well feature extraction of these models coupled with 2 Machine Learning classifiers k-Nearest Neighbours (KNN) and Support Vector Machines (SVM).
Results: Evaluation and comparison of the performance of 3 models has shown that EfficientNet+SVM achieved the best result in terms of AUC (99%) and ResNet-50-KNN ranked higher in terms of accuracy (94%) on testing dataset.
Conclusions: This framework can be harness by patients residing in remote areas and as confirmatory approach for medical experts.