Paired count regressions for modeling the number of doctor consultations and non-prescribed drugs intake.

Journal: Statistical Methods In Medical Research
Published:
Abstract

There are sundry practical situations in which paired count variables are correlated, thus requiring a joint estimation method. In this article, we introduce a flexible class of bivariate mixed Poisson regression models, which settle into an exponential-family (EF) distributed component for unobserved heterogeneity. The proposed bivariate mixed Poisson models deal with the phenomenon of overdispersion, typical of count data, and have flexibility in terms of the correlation structure. Thus, this novel class of models has a distinct advantage over the most widely used models because it captures both positive and negative correlations in the count data. Under the bivariate mixed Poisson model, inference of the parameters is conducted through the maximum likelihood method. Monte Carlo studies on assessing the finite-sample performance of the estimators of the parameters are presented. Furthermore, we employ a likelihood ratio statistic for testing the significance of certain sources of correlation and evaluate its performance via simulation studies. Moreover, model adequacy is addressed by using simulated envelopes for residual analysis, and also a randomized probability integral transformation for calibration model control. The proposed bivariate mixed Poisson model is considered for analyzing a healthcare dataset from the Australian Health Survey, where our aim is to study the association between the number of consultations with a doctor and the number of non-prescribed drug intake.

Authors
Jussiane Gonçalves, Wagner Barreto Souza, Hernando Ombao