Automated mitosis detection in stained histopathological images using Faster R-CNN and stain techniques.
Accurate mitosis detection is essential for cancer diagnosis and treatment. Traditional manual counting by pathologists is time-consuming and may cause errors. This research investigates automated mitosis detection in stained histopathological images using Deep Learning (DL) techniques, particularly object detection models. We propose a two-stage object detection model based on Faster R-CNN to effectively detect mitosis within histopathological images. The stain augmentation and normalization techniques are also applied to address the significant challenge of domain shift in histopathological image analysis. The experiments are conducted using the MIDOG++ dataset, the most recent dataset from the MIDOG challenge. This research builds on our previous work, in which two one-stage frameworks, in particular on RetinaNet using fastai and PyTorch, are proposed. Our results indicate favorable F1-scores across various scenarios and tumor types, demonstrating the effectiveness of the object detection models. In addition, Faster R-CNN with stain techniques provides the most accurate and reliable mitosis detection, while RetinaNet models exhibit faster performance. Our results highlight the importance of handling domain shifts and the number of mitotic figures for robust diagnostic tools.