Advancing Pulmonary Embolism Detection with Integrated Deep Learning Architectures.
The main aim of this study is to introduce a new hybrid deep learning model for biomedical image classification. We propose a novel convolutional neural network (CNN), named HybridNeXt, for detecting pulmonary embolism (PE) from computed tomography (CT) images. To evaluate the HybridNeXt model, we created a new dataset consisting of two classes: (1) PE and (2) control. The HybridNeXt architecture combines different advanced CNN blocks, including MobileNet, ResNet, ConvNeXt, and Swin Transformer. We specifically designed this model to combine the strengths of these well-known CNNs. The architecture also includes stem, downsampling, and output stages. By adjusting the parameters, we developed a lightweight version of HybridNeXt, suitable for clinical use. To further improve the classification performance and demonstrate transfer learning capability, we proposed a deep feature engineering (DFE) method using a multilevel discrete wavelet transform (MDWT). This DFE model has three main phases: (i) feature extraction from raw images and wavelet bands, (ii) feature selection using iterative neighborhood component analysis (INCA), and (iii) classification using a k-nearest neighbors (kNN) classifier. We first trained HybridNeXt on the training images, creating a pretrained HybridNeXt model. Then, using this pretrained model, we extracted features and applied the proposed DFE method for classification. The HybridNeXt model achieved a test accuracy of 90.14%, while our DFE model improved accuracy to 96.35%. Overall, the results confirm that our HybridNeXt architecture is highly accurate and effective for biomedical image classification. The presented HybridNeXt and HybridNeXt-based DFE methods can potentially be applied to other image classification tasks.