Research on the financial early warning models based on ensemble learning algorithms: Introducing MD&A and stock forum comments textual indicators.

Journal: PloS One
Published:
Abstract

This study analyzes 284 publicly listed companies first designated as ST or *ST between 2015 and 2023. It utilizes two types of textual indicators: Management's Discussion and Analysis (MD&A) and stock forum comments. PCA and MLP are employed for dimensionality reduction. The study compares the recognition performance of single-class models with ensemble learning models while also examining the impact of various base learners and meta-learners on the performance of the ensemble learning model. The findings show that using the two types of textual indicators significantly enhanced the model's accuracy in recognition. The single-class and ensemble learning models demonstrated average improvements of 1.24% and 1.75%, respectively. Notably, stock forum comments outperformed MD&A text. Additionally, the MLP proved more effective in feature processing than PCA. The D-M-BSA-FT model achieved an accuracy of 88.89%. Ensemble learning models outperform single classification models. After introducing textual features, the ensemble learning model achieved an average recognition accuracy of 85.31%, compared to 82.09% for the single classification model. Therefore, the financial warning model developed in this study provides valuable insights for enhancing the accuracy of financial warning identification.

Authors
Zhiheng Zhang, Zhenji Zhu, Yongjun Hua